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Test Spaces and Characterizations of Quadratic 
Spaces 
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We show that a test space consisting of nonzero vectors of a quadratic space E 
and of the set all maximal orthogonal systems in E is algebraic iff E is Dacey 
or, equivalently, iff E is orthomodular. In addition, we present another 
orthomodularity criteria of quadratic spaces, and using the result of Sol~r, we 
show that they can imply that E is a real, complex, or quaternionic Hilbert space. 

1. I N T R O D U C T I O N  

Foulis and Randall  (1972) presented the mathematical  foundations o f  
operational probability theory and statistics based upon a generalization o f  
the conventional  notion o f  a sample space. They  generalized the approach 
of  Ko lmogorov  (1933). 

Let X be a nonvoid  set; e lements  o f  X are called outcomes. We say that 
a pair (X, i f )  is a test space iff f f  is a nonempty  family of  subsets o f  X such 
that (i) for any x ~ X, there is a T ~ f f  containing x, and (ii) if  S, T E f f  
a n d S C  T, t h e n S =  T. 

Any  element o f  i f  is said to be a test. We say that a subset G o f  X is 
an event iff there is a test T E f f  such that G C T. Let us denote the set o f  
all effects in X by % = %(X, if). We say that two events F and G are (i) 
orthogonal to each other, in symbols  F ± G, iff F fq G = 13, and there is a 
test T E ff  such that F U G C_ T, (ii) local complements of  each other, in 
symbols  F loc G, iff F _L G and there is a test T E f f  such that F U G = 
T, (iii) perspective with axis H iff they share a c o m m o n  local complement  
H. We write F ~ n  G or  F ~ G if the axis is not emphasized.  
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The test space (X, ~ )  is algebraic iff, for F, G, H e %, F ~ G and F 
loc H entail G loc H. 

For algebraic test spaces, ~- is the relation of  an equivalence and, for 
any A ~ %(X, ~-), we put 

'rr(A) := {B E %(X, 0) :  B ~ A} (1.1) 

Then the logic of  the algebraic test space %(X, ~),  i.e., the set 

FI(X) := {-rr(A): A E %(X, ~)} (1.2) 

is an orthoalgebra (Gudder, 1988; Foulis and Bennett, 1993). We recall that 
an orthoalgebra is a set L with two particular elements 0, 1, and with a 
partial binary operation G: L x L ---) L such that, for all a, b, c m L, we have: 

(OAi) If a • b ~ L, then b G a E L and a • b = b • a (commutativity). 
(OAii) I f b O c  m L a n d a O ( b ~ c )  E L, t h e n a G b  E L a n d ( a G  

b) • c ~ L, and a (~ (b • c) = (a • b) • c (associativity). 
(OAiii) For any a E L, there is a unique b ~ L such that a • b is 

defined, and a (~ b = 1 (orthocomplementation). 
(OAiv) If a • a is defined, then a = 0 (consistency). 

Let a and b be two elements of  an orthoalgebra L. We say that (i) a is 
orthogonal to b and write a _L b iff a E) b is defined in L, (ii) a is less than 
or equal b and write a < b iff there exists an element c ~ L such that a 3- 
c and a • c = b (in this case, we also write b -> a), (iii) b is the orthocomple- 
ment of a iff b is a (unique) element of L such that b 3_ a and a • b = 1 
and it is written as a ±. 

We recall that an orthomodular poset (OMP for short) is an orthoalgebra 
L such that a _L b for a, b ~ L implies a v b m L; if this is a case, then a 
v b = a • b; if an OMP is a lattice, we call it an orthomodular lattice (OML 
for short). 

We say that two orthoalgebras LI and/-,2 are isomorphic iff there is a 
bijective mapping ~: Ll ---> L2 such that ~b(l) = I, and ~(a) _L ~(b) i f f a  3_ 
b, and then qb(a • b) = d#(a) ~ qb(b). 

If L is an orthoalgebra, put X = L\{0} and let ~ consist of all finite 
decompositions of 1, i.e., of  all finite systems {ai} in X such that ~ i  a; = 
1. Then (X, ~ )  is an algebraic test space, and I-I(X) is isomorphic with L 
(Gudder, 1988; Foulis and Bennett, 1993). 

For mathematical foundations of quantum mechanics, the system of all 
closed subspaces L(H) of a real, complex, or quaternionic Hilbert space H 
plays an important role. It is well known that L(H) is a complete orthomodular, 
atomistic, irreducible lattice with covering property. If X is the unit sphere 
in H and ~- is the system of all orthonormal bases in H, then this test space 
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is algebraic, and II(X) is isomorphic to L(H). We see that test spaces generalize 
both Kolmogorov axiomatic as well as Hilbert-space quantum mechanics. 

If we omit the assumption of the completeness of H, we obtain the 
family of quadratic spaces which possesses as a proper subfamily the class 
of all Hilbert spaces. Different kinds of subspaces have been used for modeling 
quantum structures and therefore it is very important to know the completeness 
criteria of quadratic spaces. 

One of the outstanding problems of the theory of orthomodular lattices 
is a characterization of orthomodular lattices to be isomorphic to L(H) for 
some Hilbert space H. Many specialists have thought that such properties as 
atomicity, exchange axiom, infinite-dimensionality, and irreducibility of a 
complete orthomodular lattice are characteristics only of ~(H). Therefore, a 
result of Keller (1980) was a great surprise for quantum logicians when he 
presented an OML with all the above properties which cannot be embedded 
into ~(H) for any H. 

The crucial results show that important classes of OMLs are geometries 
which can be realized by a vector space E over a division ring K equipped 
with a Hermitian form and with a system of subspaces of E (Piron, 1976; 
Varadarajan, 1968; Maeda and Maeda, I970). These results initiated a deep 
study of connections between orthomodular lattices and quadratic spaces. 

Let E be a quadratic space, i.e., E is a vector space over a division ring 
K with a Hermitian form ( . ,  .). For any subset M C E, we put M l = {x 

E: (x, y) = 0 for any y ~ M}. Let .~(E) denote the family of all orthogonally 
closed subspaces of E, i.e., 

~(E) = {MC_E:M l± = M} (1.3) 

and let %(E) denote the set of all splitting subspaces of E, i.e., 

%(E)=  {M_C_E:M a- + M = E t  (1.4) 

Then 

~(E) C ~e(E) 

(see below), and E is said to be orthomodular iff ,.~(E) _C %(E). 
The Amemiya-Araki-Piron result (Amemiya and Araki, 1966/67; Piron, 

1976) says that a real or complex inner product space E is complete iff ~(E) 
is an orthomodular lattice, or equivalently, iff E is an orthomodular space. 
Keller's (1980) result is the first example of a non-Hermitian orthomodular 
quadratic space over a non-Archimedian ordered ring. Important contributions 
are also Morash's (1973) notion of an angle-bisecting system and ones made 
by Gross and his school (see, e.g., Gross, 1990). 
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Recently Solar (1995) presented a very nice and surprising result that 
any infinite-dimensional orthomodular space containing a sequence of  ortho- 
normal vectors 2 is either a real, complex, or quaternionic Hilbert space. 

In the present paper, we show that the test space (E~{0}, At(E)), where 
At(E) consists of  all maximal orthogonal systems of E, is algebraic iff E is 
Dacey, or, equivalently, iff E is orthomodular. In addition, we present another 
orthomodularity criterion for quadratic spaces, and we show that it can force 
that E is a real, complex, or quaternionic Hilbert space. 

2. QUADR ATIC  SPACES 

Let K be a division ring with charK :/: 2 and with an involution *: K 
--> K such that (ct + [3)* = ct* + [3*, (ct[3)** = [3"~*, ct** = c~ for all ~, 
[3 e K. Let E be a (left) vector space over K equipped with a Hermit±an 
form (- ,  .): E × E ---> K, i.e., ( . ,  • ) satisfies, for all x, y, z e E and all or, 
[3 e K, (ax + [3y, z) = a(x, z) + [3(y, Z), (x, oLy + [3z) = (x, y)a* + (x, 
Z)[3*, (x, y) = (y, x)*. The triplet (E, K, ( . ,  . )) is said to be a quadratic 
space (or an inner product space) if (x, y) = 0 for any y E E implies x = 
0, and unless confusion threatens, we usually refer to E rather than to (E, K, 
( . ,  .)). 

A length of  a vector x e E we call the expression (x, x). A nonzero 
vector x e E such that (x, x) = 0 is said to be isotropic. E is said to be 
anisotropic if it has no isotropic vectors. For two subspaces M and N of E 
we write M _J_ N iff (x, y) = 0 for all x e M and for all y E N; it is clear 
that M _L N iff N _L M. Similarly we write x _L y if (x, y) = 0. 

Let ~ (E)  and %(L) be defined by (1.3) and (1.4). In general, {0} and 
E belong to %(E), and the system ..~(E) is an atom±st±c, complete, orthomodular 
lattice with covering property (Maeda and Maeda, 1970, Theorem 34.2). 3 
We recall that if {Mi} is a system of  subspaces from ~(E) ,  then 

V M i : ( U  Mi)  -L± = (sp(U Mi)) ±±, ^ M i = n M i ( 2 . 1 )  
i i i i i 

(v Mi) ± = n Mi -L (2.2) 
i i 

where sp denotes the span, and if M ~ ,.~(E) and dim N < 0% then 

M v N = M + N  

2 It is suff ic ient  to suppose  that  there is an infini te  sequence  of  mu tua l ly  o r thogona l  vec tors  of  
the same length.  

3A nonzero  e l e m e n t  a of  a poset  L is sa id  to be an atom of  L i f  b -< a for some  b e L impl ies  
e i ther  b = 0 or b = a. L is sa id  to be atomistic i f  any  nonzero  e l e m e n t  a e L is the jo in  of  
a toms  con ta ined  in a. We say  that b e L covers  a e L, and we wr i te  a < b i f  a < b and 
m o r e o v e r  a < c < b is not  sa t i s f ied  by any  c. L has  the covering property i f  the s t a t ement  
p is an a tom and a ^ p = 0 imp l i e s  a < a v p. 
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We note that always 

%(E) C ~ (E)  (2.3) 

Indeed, let M + M ± = E and since M C_ Max,  it suffices to prove that M ±" 
C_ M. We note first that {0} = E ± = (M + M±)"  = M ± f) M 1±. Let x e 
M j-±. Then there exist x~ E M and x2 E M ± such that x = xl + x2. Hence 
x2 = x - x~ E M ±± and therefore x2 = 0 and, consequently, x E M. 

The family %(E) is an OMP for which M J_ N implies M v N E %(E), 
and in this case M v N = M + N. In general, %(E) can be neither a cr-OMP 
even if E is a real or complex inner product space (Dvure6enskij, 1993, 
Theorem 4.1.6) nor a lattice. For example, Morales and Garcia-Mazaria (n.d.) 
considered (R 4, R, ( . ,  • >), where <., • ) is a Hermitian form for the Minkowski 
space-time: 

((Xl, X2, X3, X4), (Yh Y2, Y3, Y4)> :=  x l y l  -- x2Y2 -- x3Y3 --  x4Y4 

Then %(R 4) is not lattice, and x = (1, - 1, 0, 0, ) is a nonzero isotropic vector 
in R 4. 

A quadratic space E is said to be orthomodular iff ~ (E)  C %(E). If x 
is a nonzero vector in E, by sp(x) we denote a one-dimensional subspace of 
E spanned over x. It is simple to show (Holland, 1995) that sp(x) ~ ~ (E)  
for any x ~ Ek{0}, and an orthomodular space is anisotropic. In addition, a 
one-dimensional subspace sp(x) belongs to %(E) iff x is anisotropic, i.e., if 
x is not isotropic. If E is finite-dimensional, then the anisotropy of E implies 
the orthomodularity of  E. 

If E is anisotropic, the vi M,. ~ %(E) for a system of  splitting subspaces 
{ M i }  o f E  iff (LJ i Mi )  ±± ~ ~ ( E ) ,  and then vi M i  = ( U i  M i )  ±±.  In an analogous 
way ^i  Mi ~ ~ ( E )  iff N i M i E C~(E), and in this case Ai Mi = fqi Mi. In 
other words, the joins and meet taken in ~ (E)  and in %(E) coincide when 
they exist. 

Let M be a subspace of an anisotropic E. We say that a system of 
nonzero mutually orthogonal vectors {xi} from M is a maximal orthogonal 
system (MOS in short) in M if, x ~ M, x _L xi for any i, imply x = 0. It is 
worth to recall that if E is a real or complex inner product space, then all 
MOSs have the same cardinality. In general, this is not the case (Gross, 1990, 
Theorem 5. I). 

It is easy to verify that if {xi} is an MOS in a splitting subspace M of  
an anisotropic E, then 

V sp(xi) = {Xi} ±± = M (2.4) 
i 

We say that a quadratic space E is Dacey if, for any MOS {xi} U {y j} 
in E with {xi} N {yj} = 0, we have 

{Xi} ±± = {yj}± (2.5) 
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Let E be a quadratic space and define E0 := E\{0} and let ~-(E0) be 
the system of  all MOSs in E. Then the pair (E0, ~(E0)) is a test space, and 
denote by %(E0) the system of all events in E0. 

Theorem 2.1. Let E be an anisotropic quadratic space. Then the test 
space (Eo, ~-(Eo)) is algebraic if and only if E is Dacey. 

Proof  Suppose that (Eo, ~-(E0)) is an algebraic test space and choose 
an MOS {Xi} U {yj} in E with {Xi} 0 {y/} = 0. We have to prove that if 
A = {xi} and B = {yj}, then A ± = B ±±. It is evident that A C_ B ±, so that 
B ±± C_ A ±. Let now x be any nonzero vector in A±; we show now that x • 
B ±±. Complete {xi} fq {x} by C1 = {Zk} tO {Xi} U {x} U {z~} to be a MOS 
in E. 4 The algebraicity of  (E0, ff(Eo)) entails that 'rr({x} U {Zk}) = "rr({yi}), 
where 'rr is defined by (1.1). 

Any event in %(Eo) is either the empty set or an orthogonal system of 
nonzero vectors in E, and conversely. It is clear that if M, N are two events 
in %(Eo), then M _L N as events iff (x, y) = 0 for all x • M, y • N. We 
define M ±~ := {y • Eo: (x, y) = 0 for all x • M}. 

Denote C = {x} U Ct. We assert that w(C) = "rr(B) iff C ±~y = B l'~. 
Indeed, let "rr(C) = 'rr(B) and let {z} _L C. By algebraicity {z} _L B, so that 
z • B ±~ and, by symmetry, C ±'~" = B ±~. Conversely, let C ±~ = B ±~. If  C~ 
is a local complement  of  C, then C~ C C ±~, which yields Ci C B ±~, hence 
Ci / B, therefore "rr(C)' -< rr(B)'. If  C'  is a local complement  of  C, then in 
l-I(%(Eo)), we have "rr(C') = 'rr(C)'. Hence, 'rr(B) --< 'rr(C) and, by symmetry, 
~(C) -< 'rr(B). 

Therefore, the equality "rr(C) = "rr(B) implies C ±~ = B ±~ and C ± = 
B ±, which is equivalent to C ±± = B ±1, so that x • B ±±, which proves A ± 
C__ B ±±, and E is Dacey. 

Conversely, let E be a Dacey quadratic space. We claim the algebraicity 
of  (Eo, ~-(Eo)). So let A = {xi} and B = {y/} be two events in %(Eo) which 
share a common local complement  C = {zk}, and let Cl = {u,} be any local 
complement  of  B. We can show that Cz is a local complement  of  A, too, i.e., 
{xi} U {u,} is an MOS in E. 

Since E is Dacey, A j-± = C ±, B ±± = C ± = C~-, and A ± l  = B ±±. Let 
x _L xi, u, for all i and s. Then x • A ± = C ±± = Ci L± and x • C~-, which 
gives x = 0, so that {xi} U {u,} is an MOS in E. • 

3. ORTHOMODULARITY CRITERIA 

In the present section, we give some criteria implying the orthomodular- 
ity of  an anisotropic quadratic space E. Dvure~enskij (1993, Theorem 5.4.2) 

4Throughout the paper always when we complete an orthogonal system {ui} from Et~ by an 
orthogonal system {vj} from Eo such that {ui} U {vj} is an MOS in E, we suppose that {ui} 
n {b} = 0. 
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shows that E is orthomodular iff {Xi} ±± ~. %(E) for any system of mutually 
orthogonal vectors {xi} in E. In particular (Dvure6enskij, 1993, Theorem 
4.1.6), if E is a real or complex inner product space, then E is orthomodular 
(i.e., E is a Hilbert space) iff {xi} ±± e %(E) for any sequence {xi} of 
orthonormal vectors in E. 

We now introduce the following systems of  subspaces of  E: 
(1) ~ (E)  is the set of all Foul±s-Randall subspaces o f  E, i.e., of  all 

subspaces M for which there exists an orthogonal system of  nonzero vectors 
(OS, for short) {ui} such that M = {ui} ±-L, which is a complete orthoposet. 
Any M of ~ (E)  possesses at least one local complement M', i.e., such an 
element M' • ~ (E)  for which M' _L M and M v M' = E. 

(2) f i (E)  is the set of  all subspaces M of E such that M = {ui} ±± for 
all MOSs {u,.} of M, which is a poset. 

(3) ~ ( E )  is the set of  all subspaces M of  E such that M = {ui} ±± and 
M ± = {vj} ±± for all MOSs {ui} and {vj} of M and M ±, respectively, which 
is an orthocomplemented poset. 

It is easy to see that 

%(E) C ~C(E) C f i (E)  C ~ (E)  C_ ~ (E)  (3.1) 

Let ~ be a system of  subspaces of  a quadratic space E. We say that 
has the orthomodular property iff A, B • At with A C_ B implies B = A v 
(B (q A lL  where the join v is defined by the left-hand side of  (2.1). 

Lemma 3.1. Let E be an arbitrary quadratic space. Then E is orthomodular 
if and only if ~£(E) has the orthomodular property. 

Proof  If E is an orthomodular quadratic space, then 5f(E) = %(E) and 
%(E) has always the orthomodular property. 

Conversely, let ~ (E)  have the orthomodular property and let M • ~ (E )  
be given. We claim that M • %(E). Let x • E. I f x  • M U M ±, then easily 
x • M + M ±. Suppose now x ~ M U M ±. Then sp(x) • ~£(E), and the 
orthomodularity of  .~(E) yields M v sp(x) = M v ((M v sp(x)) ("1 M±), 
which gives ((M v sp(x)) f3 M l ¢ {0}. Hence, there is a nonzero vector z 
• M ± and z • M y  sp(x) = M + sp(x), so that there a rez l  e M a n d  a 
nonzero ~ • K with z = z~ + ax. Then x = xi + x2, where x~ := -ct-Jz~ 

M a n d x 2 : =  ot-tx e M ±. • 

Theorem 3.2. Let any MOS in an anisotropic quadratic space E be 
at most countable. Then E is orthomodular if and only if 5~(E) has the 
orthomodular property. 

Proof Suppose that ~ (E)  has the orthomodular property. We claim that 
then .~(E) = ~(E) .  Let M e ~(E)  and let {xi} be an MOS in M. Put N = 
{xi} ±±. Then N C M and we assert that N = M. If not, then there exists a 
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nonzero vector x e MW. Applying the Gram-Schmid t  orthogonalization 
process to the set {x, x~, x2 . . . .  }, we obtain an orthogonal system {x, e~, ez, 
. . . } ,  and {x, el, e2 . . . .  }±± E ~(E) .  This implies N v sp(x) = {x, el, e2, 
• . . } ± .  E 5~(E). The orthomodularity of ~ (E )  implies N v sp(x) = N v ((N 
v sp(x)) n N'L). Since x ~ N, we have (N v sp(x)) n N ± ~ {0}. Therefore, 
there is a nonzero vector z ~ (N v sp(x)) n N ± which yields z ~ M, so that 
{xi} U {z} is an OS, which contradicts the maximality of  {xi} in M. Therefore, 
our assumption that N 4= M was false, so that N = M. This means that ~ (E )  
= ~(E) ,  and by Lemma 3.1, E is orthomodular. • 

Remark 3.3. Let either (i) N ~ ~(S)  and x 4= 0 from an anisotropic 
inner product space E imply N v sp(x) E ~(S),  or (ii) let in any M E ~(E)  
there exist at most countable MOS. Then E is orthomodular if and only if 
~(S)  has the orthomodular property. 

Proof (i) The proof is same as that of  Theorem 3.2 without using the 
Gram-Schmidt  orthogonalization process. For (ii) we repeat the proof of 
Theorem 3.2. • 

We remark that if E is a real or complex inner product space of any 
dimension, then E is a Hilbert space iff ~ ( E )  has the orthomodular property 
(Dvure~enskij and Pulmannov'a,  1994, Theorem 3. I). Therefore, we do not 
know whether the condition on countability of  any MOS in Theorem 3.2 is 
superfluous in order to be E orthomodular. 

Lemma 3.4. An anisotropic quadratic space E is Dacey if and only if 
any MOS {xg} in E with {xk} C {x} ± U {y}± for some vectors x, y 
implies x .L y. 

Proof Let E b e  Dacey and let {Xk} with {xk} C {x} ± U {y}± be given. 
Define {ui} :=  {x~} n {x} l and {vj} := {xk}\{ui}. Then {ui} C {x} j- and 
{vj} C { y } ± , s o t h a t x  E {ui} ± a n d y  E {vj} ± and s i n c e E i s  Dacey, we 
have x _L y. 

On the contrary, let {xi} O {y j} with {xi} n {y j} = 0 be an MOS in 
E. Then {xi} C {)~/}±, so that {xi} ±± C_ {yj}±. If now x ~ {xi} ± and y 
{ yj } ±, then 

{Xi} U {yj} C {Xi} "t''l" U {yj}±.t. C {x} "L U {y}J- 

which gives x _L y, and hence {xi} ± _L {yj}J-, so that {yj}~ C {xi} ±±. • 

We recall that if, for an OS {xi} U {yj} with {xi} O {yj} = 0, we have 
(2.5), then {xi} U {)~/} is an MOS in E. 

Let M E ~(E);  then an element M' E ~ ( E )  such that M' _L M and M 
v M' = E is said to be a local complement of  M in ~(E) .  
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Theorem 3.5. An anisotropic quadratic space E is Dacey if and only if, 
for any M • fi(E), M j- is a unique local complement of M in fi(E). 

Proo f  Let M • fi(E) and let M = {ui} 1± for some OS {ui} in E. 
Complete {ui} by an OS {vi} such that {ui} U {yj} is an MOS in E. Since 
E is Dacey, M = {ui} ±± = {vj} l and M J- = {vj} ± e f i (E) .  It is clear that 
M ± is a local complement of M. Suppose that M' e fi(E) is another local 
complement of M in ~(E)  and let M' = {wk} l±. Then M' C M ±, {w,} U 
{Us} is an MOS in E. We assert that M' = M 1. If not, then M C M '± and 
M :~ M' ±, and there exists a nonzero vector x • M' ±VI4. Hence x • {wk} l 
and there exists y • {ui} 1 with y Z x. Then {wk} C {wk} l i  C {x} ± and 
{ui} C {y}±. According to Lemma 3.4, this contradicts that E is Dacey. 

Conversely, let M e fi(E) and let M ± • fi(E) be a unique local 
complement o f M  in fi(E). Let {xi} U {yj} with {x,-} f-) {yj} = 0be  an MOS 
in E. Define M = {xi} 1± and M' = {yj}±±. Then M .1_ M', M, M' • fi(E). 
Since M v M' = {xi} ±± v {y)}±± = ({x,} U {)).})±.L = E, we conclude 
that E is Dacey. • 

Theorem 3.6. An anisotropic quadratic space E is Dacey if and only if 

~(E) = ~(E). 

Proo f  Let M E ~(E)  and let {ui} be an OS such that by definition M 
= {ui} ± l .  Complete {ui} by an OS {v./} such that {ui} U {vj} is an MOS 
in E. Choose an arbitrary MOS {zk} in M. We claim that {Zk} U {vj} is an 
MOS in E. If  not, complete {zk} U {vj} by an OS {Ys} such that {zk} U {~.} 
U {y,} is an MOS in E. Since E is Dacey, M 1 = {vj}±; consequently, M 
= ({zk} I.J {ys}) ±l ,  which contradicts the maximality of {Zk} in M; conse- 
quently we have proved that M = {z,} j-j- for any MOS {z~} in M, so that 
fi(E) C fit(E). Since M ± = {vj} ±± e ~(E)  = fit(E), we conclude that M 

~V(E). 
Let ~V(E) = fi(E) and suppose that {ui} U {vj} with {ui} N {vj} = 13 

is an MOS in E.. Putting M = {ui} J-l, we have M e ~(E)  = °I/'(E). Now, 
{vj} _1_ {ui} implies {v~} C {ui} ± = M ±, but {vj} is a maximal in M ±, as 
can be easily seen, so that {v./} ±l  = M "  = {ui} ' .  • 

Theorem 3.7. Let any MOS in an anisotropic quadratic space E be at 
most countable. The following statements are equivalent. 

(i) E is orthomodular. 
(ii) E is Dacey. 
(iii) (Eo, ~-(E0)) is an algebraic test space. 
(iv) ~(E)  = fi(E). 
(v) For any M e fi(E), M 1 is the unique local complement o f M i n  fi(E). 
(vi) fit(E) = ~)(E). 
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Proof  The equivalence of  (ii), (iii), (iv), and (v) has been established 
in Theorems 2.1, 3.5, and 3.6. 

(i) ~ (ii). If now E is orthomodular, then ~ (E)  = %(E) so that by (3.1) 
we conclude that f i (E)  = ~b(E) and Theorem 3.6 implies that E is Dacey. 

(ii) ~ (i). Suppose E is Dacey, First we show that if M • ~ (E )  and x 
• E0kM, then M v sp(x) • ~(E) .  Choose an MOS {ui} in M; then by (iv), 
{ui} l±  = M. Applying the Gram-Schmidt  orthogonalization process to {x, 
ul, u2 . . . .  }, we obtain an OS {x, xl, x2 . . . .  } such that {x, ul, u2 . . . }±±  = 
{x, xl, x2 . . . .  }.L±. Hence, M v sp(x) = {x, ut, u2 . . . .  }l± • ~(E) .  

We now show that ~ ( E )  has the orthomodular property (even without 
any assumption on cardinalities of  MOSs). Indeed, let A, B • ~ (E)  with A 
C_ B be given. Then A = {ui} "± for some OS {ui}, and complete {ui} by 
{vj} such that {ui} t,J {v./} is an MOS in B. Then 

B D A v (B fq A ±) = {ui} ±± v (B fq A ±) 

{Ui} l ±  V {Vj} 3"± = ({/,/i} I,..J {Vj})  ± l  = B 

Finally, let M • ~g(E) and choose an MOS {Xk} in M. Similarly as in 
the proof of  Theorem 3.2, we can prove that M = {xk} ±±. Consequently, 
~ (E )  = ~ (E)  and E is orthomodular. 

(i) ~ (vi). This is evident. 
(vi) ~ (iv). Let M • ~b(E) and choose an MOS {ui} in M. Then M = 

{ui} ±± • f i (E) .  Complete {ui} by an OS {vj} such that {ui} tO {vj} is an 
MOS in E. Then M' = {vj} ±± C M 1. We assert that M ± = M'. Indeed, l e tx  
be any nonzero vector in M -L. Applying the Gram-Schmid t  orthogonalization 
process to {x, vt, v2 . . . .  }, we obtain an OS {x, xl,  x2 . . . .  } such that {x, vt, 
v2 . . . .  }±± = {x, xl,  xz . . . .  }±±. Then M' v sp(x) • ~ (E) .  It is evident that 
{vi} is an MOS in M' as well as in M' v sp(x). Since M' v sp(x) • f i(E),  
we conclude that M v sp(x) = {vi} l±  = M' ,  which implies x • M'  and M'  
= M  ±. • 

An anisotropic quadratic space E is half-normal if  there is a sequence 
{ei}i~l of  mutually orthogonal vectors such that (ei, ei) = 1 for any i ({ei},- 
is called an orthonormal sequence). 

Theorem 3.8. Let E be an infinite-dimensional half-normal anisotropic 
quadratic space such that any MOS in E is at most countable. The following 
statements are equivalent. 

(i) E is orthomodular. 
(ii) E is Dacey. 
(iii) (E0, ~-(E0)) is an algebraic test space. 
(iv) ~ ( E )  = ~(E) .  
(v) For any M • ~(E) ,  M ± is the unique local complement of M in ~(E) .  
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(vi) ~ ( E )  = ~ (E) .  
(vii) {ui] ±x • ~(E) for any oS {ui} in E. 
(viii) E is a real, complex, or quaternionic separable Hilbert space, dim 

E = No. 

P r o o f  The equivalence of (i)-(vi) and (vii) follows from Theorem 3.7 
and Dvure~enskij (1993), Theorem 5.4.2. Applying Solbr's theorem to (i), 
we conclude that E is a real, complex, or quatemionic Hilbert space, dim E 
= ~0- m 

Theorem 3.9. Let E be an anisotropic half-normal quadratic space, dim 
E = b~0, and let all MOSs in M = {e,-} ±± have the same cardinality, where 
{ei}iW-_l is an orthonormal sequence. The following statements are equivalent. 

(i) E is orthomodular. 
(ii) 5~(E) has the orthomodular property. 
(iii) E is Dacey. 
(iv) (E0, f f(Eo)) is an algebraic test space. 
(v) ~(E) = ~(E). 
(vi) For any M • ~)(E), M" is the unique local complement of M in ~)(E). 
(vii) ~ (E)  = ~(E).  
(viii) {ui} ± l  • %(E) for any OS {ui} in E. 
(ix) E is a real, complex, or quatemionic Hilbert space. 

Proo f  Statement (i) implies all the other ones, and (ix) yields (i)-(viii). 
(ii) =:~ (i). (a) let {ei}i%l be an orthonormal sequence. Put M = {el} l ± .  

Then M • ~(E)  _C ~(E).  
Define 

~(0,  M) = {N ~ ~(S): N C_ M, N LM±M = N} 

~(M) = {N C__ M: N ±M-LM = N} 

~(0,  M) = {N • ~(S): N C_ M} 

~ ( M )  = {N  C_ M: {ui} IMJ-M = N for some ONS {ui} } 

where N IM = {x • M: (x, y) = 0, V y  e N}  = N ± f3 M. Then 

~(0,  M) = ~(M) (3.2) 

5~(0, M) = 5~(M) (3.3) 

Indeed, it is evident that ~(0,  M) C ~(M). Conversely, let N e ~(M); we 
assert that N ± ± = N. Calculate 

N = N fq M C_N ±± f3 M = (N±) ± fq M = (N±) -LM C_ (N±M) ±M = N 

so that N = N" ±. Here we used the fact that if A C M, then A ± D A ±M. 
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Let now N • ~(0 ,  M). Then N = {ui} l ±  C M for some orthonormal 
system {ui} in N. From (3.2) we have N ±M±M = N ±± = N. Calculate 

N = {ui} ±~ = {ui} ±1 C1 M = ({u i }±)  -LM C {ui} "}'M±M C N 

Hence, N = {ui} ±M'M and N e ~(M).  
Conversely, let N e ~(M);  then N = {ui} ZM±M C M. By the assumptions, 

{ui} is countable. Put No = {ui}±±; then No C N. We assert that No = N. 
Take a nonzero vector x e N. Applying the Gram-Schmid t  orthogonalization 
process to {x, ul, uz . . . .  }, we obtain an OS {x, vl, v2 . . . .  }, and similarly as 
in the proof of  Theorem 3.2, we obtain that x e No. 

Applying Theorem 3.2 to the anisotropic quadratic space M, we have 
from (3.2) and (3.3) that M is an orthomodular half-normal space, dim M = 
N0, containing {ei}i~=l . Applying the Solar theorem to M, we see that M is a 
real, complex, or quatemionic Hilbert space. In particular, the division ring 
K of  E (which is the same as that of  M) is a real, complex, or quaternionic one. 

(b) Let now {xi} be any sequence of orthonormal vectors in E. Put Mt 
= {x;}±±; then MI e ~ (E )  and M1 s ~b(E). It is evident that (3.2) and (3.3) 
hold also for M = Mi, so that ~£(MI) has the orthomodular property, which 
in view of the theorem of  Amemiya-Arak i -P i ron  (holding also for the 
quaternionic case), implies that Mm is complete and hence MI s %(E). By 
Dvure~enskij (1993), Theorem 4.1.6, this implies that E is complete. 

(vii) ~ (ix). Put as in (a), M = {ei} l ±  and define 

~ (0 ,  M) = {N C_ ~(E) :  N C_ M, N = {ui} -kM±M = N 

for any MOS {ui} in N} 

gt (M)  = {N C M: N = {ui} ±M±M for any MOS {ui} in N} 

In similar manner as that in (a), we can prove that gt(0, M) = gt(M). Therefore, 
~ (M)  = gt(M), which, by (vi) of Theorem 3.8, implies that M is a real, 
complex, or quaternionic Hilbert space, so that E is a real, complex, or 
quaternionic quadratic space. 

Choose now any mutually orthonormal sequence {xi} in E and define 
Ms = {xi} ±±. Repeating the same process for Ml, we have g t (M0 = ~b(Mi), 
so that Ml is complete, and consequently E is a Hilbert space. 

The equivalence of  (iii)-(vii) has been established in Theorems 2.1, 3.5, 
and 3.6 without any assumption on the cardinal±ties of MOSs. • 

Remark  3.10. Theorems 3.8 and 3.9 are also valid if E is not necessarily 
half-normal, but if in E there is a sequence of  mutually orthogonal nonzero 
vectors {ei} of the same length. Indeed, we follow ideas of  Holland (1995). 
Let k = (el, el). Endow K with a new involution #: K---> K by e~ # := h ~ * h  -~ 
and define a new Hermit±an form <-, • ) on E by (- ,  • ) = ( ' ,  ")h -t. Then 
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(E, K, ( - ,  • )) is with respect  to # an anisotropic  quadratic space,  and or thogo-  
nalities def ined by ( - ,  "), and ( . ,  .)  are the same.  

Example 3.11. Let Z be the field o f  all integers and let z f  be the set o f  
all sequences  (zl, z2 . . . .  ) e Z ~ such that only  finitely many  zi are nonzero.  
Then Z f can be assumed as a vec tor  space  over  Z, and we define a bi l inear 
form ( - ,  • ): Z f × Z f ---> Z via 

((zl, z2 . . . .  ), (tt, t2 . . . .  )) = ~ ziti 
i 

Then ( Z  f Z,  ( . ,  .)) is an inf ini te-dimensional  anisotropic quadrat ic  space. 
Define ei = (0 . . . . .  1 . . . .  ), where  1 is on the ith place of  ei. Then {ei}i~=l 
is an o r thonormal  sequence,  but Z f is not an o r thomodula r  space (Piziak, 
t992,  E x a m p l e  2.3). 
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